On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups

نویسندگان

چکیده

In this note, we prove a blow-up result for the semilinear damped wave equation in compact Lie group with power nonlinearity $|u|^p$ any $p>1$, under suitable integral sign assumptions initial data, by using an iteration argument. A byproduct of method is upper bound estimate lifespan local time solution. As preliminary result, (in time) existence proved energy space via Fourier analysis on groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear equations on nilpotent Lie groups: global existence and blow-up of solutions

In this note we consider a semilinear Cauchy problem on a nilpotent Lie group. We extend a classical result by Fujita about the global existence and the blow-up of solutions.

متن کامل

Global solutions and finite time blow up for damped semilinear wave equations

A class of damped wave equations with superlinear source term is considered. It is shown that every global solution is uniformly bounded in the natural phase space. Global existence of solutions with initial data in the potential well is obtained. Finally, not only finite time blow up for solutions starting in the unstable set is proved, but also high energy initial data for which the solution ...

متن کامل

Inertial manifolds of damped semilinear wave equations

© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...

متن کامل

On blowup for semilinear wave equations with a focusing nonlinearity

In this paper we report on numerical studies of formation of singularities for the semilinear wave equations with a focusing power nonlinearity utt−∆u = u in three space dimensions. We show that for generic large initial data that lead to singularities, the spatial pattern of blowup can be described in terms of linearized perturbations about the fundamental selfsimilar (homogeneous in space) so...

متن کامل

Global Attractors for Damped Semilinear Wave Equations

The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.02.002